
Source Code Plagiarism in
Computer Engineering Courses

Wolfgang Granzer
Vienna University of Technology, Institute of Computer Aided Automation, Automation Systems Group

Treitlstraße 1-3, 1040 Vienna, Austria
w@auto.tuwien.ac.at

Friedrich Praus, Peter Balog
University of Applied Sciences Technikum Wien, Department of Embedded Systems

Höchstädtplatz 5, 1200 Vienna, Austria
{praus,balog}@technikum-wien.at

Abstract— In today’s university life, teachers are often con-
fronted with plagiarism. A special form of plagiarism is source
code plagiarism typically found in programming courses at
universities and schools. Detecting or even preventing source code
plagiarism is by no means a trivial task. Therefore, this paper
explains and discusses different methods that can be used to
prevent and detect source code plagiarism. The second part of
this paper is focused on automatic tools that assist in detecting
plagiarism. Finally, an approach is presented which can be used
to detect source code plagiarism in PLC (programmable logic
controller) programs.

Index Terms— Didactics, Plagiarism, Computer Engineering,
PLC.

I. INTRODUCTION

The motivation for students to engage in cheating is different as
the cases arise. In some, students may have too little knowledge,
motivation, or time to solve a particular challenge. However, often
the motives are simple convenience and ignorance (i.e., being
unaware about the ethical and legal facets of cheating). Since the
term ”cheating” has many different meanings, it can be interpreted
differently. It can mean the illegal use of text books, cheat sheets,
or the neighbor’s help during exams, paying others to solve or
create work for assignments, and also plagiarism.

There are many different definitions of plagiarism. In addition
to a detailed survey about common interpretations of the term pla-
giarism in [1], a good definition can be found in [2]: “Plagiarism
is the practice of claiming or implying original authorship of (or
incorporating material from) someone else’s written or creative
work, in whole or in part, into one’s own without adequate
acknowledgment.”

Plagiarism violates other people’s or companies’ intellectual
property rights (IPR). According to [3], IPR regulate the rights
the creator of a work grants to the general public with the main
parts: Copyright, Patents, Trade Marks, Design Rights, Passing
off, and the law of confidential information. Regarding plagiarism,
the copyright is the most important part that is violated. This
copyright exists for any original work from the time of creation
on and regulates the legal options someone has regarding another
ones work.

The work presented in this paper was funded by the City of Vienna,
department MA27, under grant number MA27-Projekt 10-04.

Plagiarism can also happen unintentionally. This must not
be neglected. For example, especially inexperienced students
may copy from others without properly referencing their work.
Nevertheless, also unintentional plagiarism comes along with
the same drawbacks since it is still a violation of IPR. Thus,
informing and educating students about cheating, plagiarism, IPR,
and the resulting consequences is an important objective of higher
education institutions.

For companies, plagiarism mainly has a financial aspect –
money is lost if their work is stolen instead of being bought
or licensed. From an educational point of view, the main con-
sequence of plagiarism is that students are not getting familiar
with the content of a certain lecture. For example, a simple
”copy-and-paste” of the solution of an exercise does not require
any knowledge about the content of teaching. Last but not least,
education has not only the objective to teach new knowledge, but
also to impart ethical principles. Furthermore, plagiarism lessens
the work of others who have solved exercises on their own.

It is important to define which kind of intellectual creations
(according to IPR laws) can be plagiarized and where plagiarizing
starts. In education, traditionally books, theses, presentations,
and papers have long been the only sources that are prone to
plagiarism. Today, with the spreading of the Internet, source code,
scientific publications and books and any information available
on the Internet (e.g., forums, wikipedia) are equally subjected to
plagiarism.

Due to the increasing number of participants in programming
courses at universities, special attention has to be paid on source
code plagiarism. The main resources of source code are the
Internet (e.g., sourceforge, forums) and probably other students.
Different types of source code plagiarism can be identified. First,
source code can be taken from the openly accessible libraries.
Since open-source allows per definition the (re-)use of existing
source code (under limitations), this kind of plagiarism is not
illegal. However, from the lecturers point of view, reusing source
code from the Internet may not be tolerated. Second, the source
code may also be obtained from (last year’s) example solutions
given out by the lecturers themselves or by other students.

Finally, source code can also be copied from other students.
This can happen with or without the consent of the creator of
the work. A problem may arise if source code is copied with
the consent of the producer. In this case, the legal aspects are
not fully clear. Still, in a university, it is considered plagiarism.



Connected to this problem is the case, where students are working
in teams to solve an exercise. Clearly, all of them are the creators
of the work and so (ideally) all have profound knowledge about
the way how the exercise has been solved. Therefore, it is not
clear whether such a situation should be identified as plagiarism
or not. A possible solution is to either explicitly prohibit or allow
teamwork by the lecturers (cf. Section II).

Due to these new challenges in the field of plagiarism, this
paper is focused on source code plagiarism. In Section II, a
brief introduction to source code plagiarism is given. Additionally,
basic countermeasures are described. Section III is focused on the
detection of source code plagiarism using automatic tools. Finally,
Section IV describes how automatic tools can be used to detect
plagiarism of PLC (programmable logic controller) programs.
Since available tools are only partly usable for PLC programs,
it is shown how a generic plagiarism detection algorithm can be
adapted to support the detection of plagiarism of PLC programs.

II. CHALLENGES IN SOURCE CODE PLAGIARISM

According to [4], methods that counter source code plagiarism,
can be divided into two categories. Plagiarism prevention, on the
one hand, has the aim to avoid the opportunity of plagiarism
a priori. In the case of source code plagiarism at education
institutes, this means that students shall not have the opportunity
to submit a solution to a programming exercise that he/she did
not solve by him/herself. To avoid such a source code plagiarism,
lecturers have to create exercises that are unique for each student.
The best way would be to create specifications that are unrelated
to each other. Obviously, this approach is impracticable for
courses with a large number of attendees. The situation is further
aggravated, if the same course is offered at regular intervals (e.g.,
each term). To avoid that students submit solutions that have been
already previously submitted, the lecturers cannot reuse existing
exercises. An alternative approach would be to define a common
exercise and vary it in a way that the solution is different for each
student. Consider, for example, a programming exercise where the
birth date of the student is used as parameter that changes the way
to solve the problem (and therefore the solution) slightly. If such
a parameter that changes the way to solve the problem is used
appropriately, it is possible to prevent plagiarism while the effort
of exercise creation remains manageable.

On the other hand, plagiarism detection methods are used to
identify plagiarism after the violation of IPR. In the case of
source code plagiarism at education institutes, these methods have
the aim to detect plagiarism after the students have submitted
the solution of their exercises. While prevention methods set
precautions that avoid plagiarism, detecting methods try to dis-
close already existing violations. Obviously, prevention methods
should be preferred whenever possible since the positive effect
is long-term. But as mentioned above, there are situations where
prevention methods cannot be used due to possibly high adminis-
tration effort. Detection mechanisms, on the other hand, are less
time-consuming from the lecturers’ point of view. Therefore, in
situations where prevention methods are inapplicable, plagiarism
shall be at least detected by using detection mechanisms. The rest
of this paper is focused on detecting plagiarism.

Detecting source code plagiarism in programming courses can
be achieved in two different ways. First, it is possible to invite the
students to a personal interrogation after they have submitted their
solutions (manual plagiarism detection). In such a conversation

with the lecturers, the lecturers have the opportunity to verify
whether the student has profound knowledge about the content
of teaching or that the student has solved the challenge on
his/her own. Obviously, these personal interrogations are very
time-consuming and therefore, this form of plagiarism detection
can only be used in small courses.

Second, special software tools can be used to detect source code
plagiarism automatically (automatic plagiarism detection). Com-
pared to manual methods like the interrogations mentioned above,
the use of automatic tools results in less effort for the lecturers,
if the tool has been adapted to satisfy the needs of the course
environment. However, due to the nature of these automatic tools,
there is always the chance that a legal solution is tagged as a
false-positive plagiarism. Another problem with automatic tools
is that students may work in teams. Sometimes, this situation is
further aggravated since there may be courses where students have
to submit their own solutions of the programming exercise but
team work is not explicitly forbidden. Obviously, the submitted
solutions (or at least parts of it) that are the result of (partial)
team work will be similar. In such a case, automatic tools cannot
be used since they are not able to figure out whether the student
was involved in solving the challenge or not. Therefore, in such
situations, a differentiation between plagiarism and team work is
not easy to achieve especially if automatic tools are used.

To combine the advantages of manual and automatic detection
methods, a hybrid approach can be used. An automatic tool can
be used to identify solutions that are suspicious of being copied.
Afterwards, the authors of these solutions are invited to a personal
interrogation. Here, the lecturers can verify whether the solution
was a real plagiarism by making a code review. If the student
is familiar with his/her own code, and the student has enough
profound knowledge about the content of teaching, the output
of the automatic tool is a false-positive or the student was the
originator and another student has copied the solution.

III. AUTOMATIC TOOLS FOR SOURCE CODE PLAGIARISM

DETECTION

Detecting source code plagiarism using automatic tools is by no
means a trivial task. The two most important objectives of a pla-
giarism detection algorithm are the accuracy (i.e., the detection-
rate and the error-rate of the algorithm) and the efficiency (i.e.,
the complexity of the algorithm as well as the amount of time the
algorithm needs to produce the result) [5]. On the one hand, the
algorithms shall be trustworthy. On the other hand, the error-rate
i.e., the probability of a false-positive decision shall be as low as
possible. However, to achieve a high accuracy, a deeper analysis
of the source code is required. Obviously, a detailed analysis
is more time-consuming and therefore efficient algorithms are
necessary.

Generally, the automatic process of detecting plagiarism1 can
be divided into three steps [5]. In the abstraction phase, both the
used data (e.g., global and local variables and data structures)
as well as the functionality of the program (i.e., the program
logic) is analyzed. Then, the analyzed data and instructions are
stored in an abstract way. The aim of this phase is to provide
a generic representation of the program which can be further
processed. The variables and data structures are often stored

1For the rest of this paper, the term plagiarism is used as a synonym for
source code plagiarism



in tables where the identifiers as well as the data types are
stored. The program logic, on the other hand, can be represented,
for example, as flow charts. In the second phase, the stored
information is filtered and irrelevant information is discarded
(filtration phase). Finally, the filtered information is compared
to identify program or data fragments that are similar and may
indicate plagiarism (comparison phase).

The accuracy and efficiency of automatic tools is mainly
influenced by the level of linguistic analysis of the abstraction
and filtering phase. On the one hand, tools that are based on
lexical analysis are simple and fast. A typical example would be
a simple tool that counts tokens of a specific type and compares
the amount of tokens found inside the programs. Obviously, since
these tools do not consider the semantic of the program (i.e.,
the program logic), they are inaccurate and can be fooled very
easily. On the other hand, to increase the accuracy of plagiarism
detection, the functionality of the program has to be analyzed.
This can be achieved by a detailed semantic analysis which is,
however, time-consuming especially if complex programs have to
be analyzed.

Since the accuracy of source code analysis algorithms on
the one hand, and their efficiency on the other hand conflict,
modern plagiarism detection tools use an iterative process to
analyze source code. In a first step, the program is analyzed at a
macro level. This means that the program is divided into a small
portion of relatively large program fragments. These fragments are
analyzed and, if they are suspected of plagiarism, these fragments
are analyzed more in detail (micro level analysis).

IV. PLAGIARISM DETECTION IN PLC PROGRAMS

Today, many different software tools that are dedicated to detect
source code plagiarism exist. While earlier tools only support
simple analysis mechanisms that are based on token counting
[6], [7], modern plagiarism detection tools consider the program
structure and semantic. Some of the most important ones are
Plague [8], SIM [9], YAP3 [10], Moss [11] and JPlag [12]. A brief
introduction to these tools is given in [13], [14]. Furthermore, an
evaluation and comparison of them can be found in [15].

Since the syntax of programming languages varies, automatic
tools have to provide support for those languages. Obviously, it
is impossible to support all different programming languages and
so, most automatic tools such as the ones mentioned above only
support the most common programming languages (e.g., C/C++,
Java).

However, PLC (programmable logic controller) programs are
written in completely different languages. These languages are
defined in part 3 of the International Standard for Programmable
Logic Controllers (IEC 61131-3 [16]) which has been published
by the International Electrotechnical Commission (IEC). In this
standard, 5 different programming languages (three graphical and
two textual) are specified. These are:

• Instruction List (IL): textual
• Structured Text (ST): textual
• Function block diagram (FBD): graphical
• Sequential function chart (SFC): graphical
• Ladder diagram (LD): graphical
While writing PLC programs using graphical languages is

easier for beginners (and therefore for students), textual PLC
programming languages are more suitable for automatic machine
processing (e.g., a parser). However, it is possible to transform

each PLC program from one IEC 61131-3 language into another
(under some limitations). Therefore, the textual languages IL and
ST are more suitable for automatic plagiarism detection. Figure 1
shows an example of a PLC network that has been designed using
the PLC programming tool Siemens STEP 7-Micro/WIN. This
simple network consists of a functional block CTU (up-counter).
In the upper part of this figure, the network is represented as
a ladder diagram. In the lower left corner, the corresponding
instruction list is shown.

Fig. 1. PLC programming languages according to IEC 61131-3

However, a first look at the available detection tools shows that
these tools are only partly usable to detect plagiarism of PLC
programs. Therefore, the remainder of this section is focused on
plagiarism detection of PLC programs. While in Section IV-A the
problem of fooling detection tools with respect to PLC programs
is discussed, Section IV-B described a possible detection method
that can be used for PLC programs.

A. Fooling PLC Plagiarism Detection

A problem that arises with the use of automatic detection tools
is that creators of source code may try to fool the detection tool.
In [17], a list of possibilities to fool detection tools is given. With
respect to plagiarism detection of PLC programs, these are2:

• Text replacement: A simple method to obscure plagiarism is
to rename identifiers. For example, in a PLC program, the
address of internal memory bits can be changed (e.g., use
M2.0 instead of M1.0).

• Code reordering: Code reordering means that parts of the
program code are reordered in a way that the behavior of
the program remains. In a PLC program, this can be done
within a single network (e.g., reorder an ”and” operation like

LD M1.0
A M2.0
= Q0.1

to

LD M2.0
A M1.0
= Q0.1

2All examples given here are conform to the IL language as specified in
IEC 61131-3.



), within a subroutine (e.g., reorder networks that are unre-
lated to each other) or even within the program (e.g., move
code fragments from one subroutine to another subroutine
or reorder subroutines).

• Code rewriting: Here, a single instruction or even a whole
function is rewritten. For example, in a PLC program, the
program logic of a PLC network can be rewritten in a way,
that a CTD (down-counter) can be replaced by a CTU (up-
counter).

• Spurious code insertion/deletion: To fool the detection tool,
code that does not do anything meaningful can be inserted.
Consider, for example, a useless network (e.g., any operation
on a variable that is not used anywhere else) that does not
influence the behavior of the program is inserted into a PLC
program.

• Source code mixing: This means that plagiarized code (e.g.,
open-source libraries or code from other students) is mixed
with own code. In a PLC program, someone can use foreign
subroutines or libraries and include them into his/her own
code. It is even possible that plagiarized code from multiple
sources is used.

B. A Possible Approach to Detect Plagiarism of PLC Programs

In [5], a generic approach to detect source code plagiarism is
presented. While this approach is, in principle, suitable for any
programming language, the authors use the algorithm to detect
plagiarism of C programs. Therefore, in the remainder of this
section, it is shown how this basic algorithm can be applied on
PLC programs.

The algorithm itself consists of 5 steps. In the first step (called
design generation), the program is transformed into a structure
chart. This structure chart consists of two parts: a symbol table
called data dictionary and a tree representing the program logic.
In the case of PLC programming languages, the data dictionary
stores the used memory addresses including the chosen alias
name, the memory type (e.g., input register, output register,
variable memory, memory bits, special memory bits, counter
memory, timer memory) and the used addressing mode(s) (bit-
wise, byte-wise, word-wise or double word-wise). The program
logic of the PLC program is stored in a tree. While the PLC main
program itself acts as the root node for the tree, the different
PLC networks and PLC subroutines of the main program are
represented as subnodes of this root node. The operations and
functional blocks are leaves of these subnodes.

In the second step, the structure chart is partitioned into
strongly-coupled regions (region delineation). These regions are
assigned a given region type. However, since the region types
presented in [5] are dedicated to the C programming language,
new ones have to be defined for PLC programs. A possible
solution would be to classify the PLC networks according to the
operation of the functional block. For example, the network

LD I0.0
LDN SM0.0
CTU C0,1

can be classified as a network of type Counter since the
functional block CTU represents an up-counter.

In the next step (abstract comparison), the before classified
regions are compared pair-wise with the regions of the other PLC
programs that are under test. The main aim of this stage is to find

regions that are basically similar. If there is a significant correla-
tion between regions of different PLC programs, the algorithms
continues with this region. Otherwise, the region is discarded and
it is not further processed. Details on the comparison algorithm
can be found in [5].

If a region is tagged as a suspicious one, a detailed comparison
of this region is performed (step 4: micro comparison). Here, the
nodes i.e., the statements of the regions, are compared more in
detail.

Finally, the data dictionaries generated before are also com-
pared for similarity.

In this section, only the basic principles of this generic algo-
rithm are presented. However, a prototype implementation which
can be used to detect source-code plagiarism of PLC programs
is still missing. Using this implementation, the suitability i.e., the
accuracy and efficiency has to be evaluated. Especially, it has to
be investigated whether the algorithm can be fooled using the
possibilities listed in Section IV-A.

V. CONCLUSION AND FUTURE WORK

In this paper, a survey on source code plagiarism has been
given. After a brief introduction, different methods to counter
source code plagiarism are described. These methods can be
classified into methods that prevent plagiarism a priori and
methods that detect plagiarism. While, in general, a plagiarism
prevention should be preferred, plagiarism detection methods are
less time-consuming due to assistance of automatic software tools.

The second part of the paper is focused on these automatic
tools that assist in detecting source code plagiarism. A description
how these tools generally work is given. As shown in this paper,
many different tools exist with support for different programming
languages. Since the detection of plagiarism of PLC programs is
not natively supported, an outlook on how this can be achieved
using a generic detection algorithm is presented. However, since a
prototype implementation is still missing, there is room for future
work.

REFERENCES

[1] H. Maurer, F. Kappe, and B. Zaka, “Plagiarism - A Survey,” Journal of
Universal Computer Science, vol. 12, no. 8, pp. 1050–1084, Aug. 2006.

[2] Wikipedia, “Plagiarism,” Online[09.04.2008]:
http://en.wikipedia.org/wiki/Plagiarism, Apr. 2008.

[3] M. Madhavan, “Intellectual Property Rights: An Overview,” On-
line[09.04.2008]: http://www.jisclegal.ac.uk/pdfs/IPROverview.pdf, Mar.
2006.

[4] R. Lukashenko, V. Graudina, and J. Grundspenkis, “Computer-based
Plagiarism Detection Methods and Tools: An Overview,” in Proceedings
of the International Conference on Computer systems and technologies,
2007, pp. 1–6.

[5] B. Belkhouche, A. Nix, and J. Hassel, “Plagiarism Detection in Software
Designs,” in Proceedings of the ACM Southeast Conference, Apr. 2004,
pp. 207–211.

[6] K. J. Ottenstein, “An Algorithmic Approach to the Detection and
Prevention of Plagiarism,” SIGCSE Bull., vol. 8, no. 4, pp. 30–41, 1976.

[7] J. L. Donaldson, A.-M. Lancaster, and P. H. Sposato, “A Plagiarism
Detection System,” in Proceedings of the twelfth SIGCSE technical
symposium on Computer science education, 1981, pp. 21–25.

[8] G. Whale, “Identification of Program Similarity in Large Populations,”
The Computer Journal, vol. 33, no. 2, pp. 140–146, 1990.

[9] D. Gitchell and N. Tran, “Sim: a utility for detecting similarity in
computer programs,” SIGCSE Bull., vol. 31, no. 1, pp. 266–270, 1999.

[10] M. J. Wise, “Yap3: improved detection of similarities in computer
program and other texts,” SIGCSE Bull., vol. 28, no. 1, pp. 130–134,
1996.

[11] A. Aiken, “Moss: A System for Detectiong Software Plagiarism,”
Online[09.04.2008]: http://theory.stanford.edu/ aiken/moss/.



[12] L. Prechelt, M. Malpohl, and M. Phlippsen, “JPlag: Finding plagiarism
among a set of porgrams with JPlag,” Universal Computer Science,
vol. 2, pp. 1016–1038, 2002.

[13] K. W. Bowyer and L. O. Hall, “Experience using ’MOSS’ to detect
cheating onprogramming assignments,” in Proceedings of the 29th An-
nual Frontiers in Education Conference, vol. 3, Nov. 1999, pp. 13B3/18–
13B3/22.

[14] C. Arwin and S. M. M. Tahaghoghi, “Plagiarism detection across pro-
gramming languages,” in Proceedings of the 29th Australasian Computer
Science Conference, 2006, pp. 277–286.

[15] T. Lancaster and F. Culwin, “A Comparison of Source Code Plagiarism
Detection Engines,” Computer Science Education, vol. 14, no. 2, pp.
101–112, Jun. 2004.

[16] Internalion Electrotechnical Commision (IEC), “Internation Standard
IEC 61131-3: Programming Languages,” 2003, Second Edition.

[17] M. Freire, M. Cebrian, and E. del Rosal, “AC: An Integrated
Source Code Plagiarism Detection Environment,” Online[09.04.2008]:
http://arxiv.org/abs/cs/0703136v1, Mar. 2007.


