A Simulation Framework for Fault-Tolerant Clock Synchronization in
Industrial Automation Networks

Fritz Praus, Wolfgang Granzer, Georg Gaderer, Thilo Sauter
Research Unit for Integrated Sensors Systems, Austrian Academy of Sciences
Viktor Kaplan Strasse 2, A-2700 Wiener Neustadt, Austria
{Fritz.Praus,Wolfgang.Granzer,Georg.Gaderer, Thilo.Sauter } @ oeaw.ac.at

Abstract

Many applications such as distributed measurements
or real-time networks benefit from a common notion of
time. Protocols providing high precision and simple clock
synchronization are necessary to achieve such a com-
mon time base. However, most of the available proto-
cols are lacking with regard to fault tolerance and per-
formance in case of a fault. The project IMAGINE (Intro-
duction of Master Group Based Industrial Ethernet) over-
comes these limitations by introducing a fault-tolerant
IEEE 1588 master group. A proof of concept for a large-
or even medium- scale network is, however, very difficult
to obtain under laboratory conditions. Therefore, a simu-
lation framework has been developed, which is presented
in this paper.

1. Introduction

Synchronization of processes is an essential require-
ment in distributed systems. One possibility to do so is
clock synchronization, and various technologies to syn-
chronize clocks exist today. Key properties of a clock
synchronization approach are its achievable precision and
accuracy. Precision refers to the synchronization of the
clocks with respect to each other whereas accuracy is de-
fined as synchronization of nodes with respect to an ex-
ternal reference (e.g., GPS time). Currently, an accuracy
of nanoseconds or even better is possible. Still, it is desir-
able that these highly precise clock synchronization pro-
tocols are kept as simple and robust as possible. On the
one hand, the protocol shall be fault-tolerant in that syn-
chronization must be possible in a reasonable time even
when key components of the network (e.g, a synchroniza-
tion master) fail. On the other hand, resources require-
ments (e.g., regarding network bandwidth, node capacity)
shall be as small as possible especially in large networks.

As shown in Section 2, none of the available clock
synchronization protocols satisfy the above mentioned re-
quirements. The research project IMAGINE (Introduc-

1-4244-0826-1/07/$20.00 © 2007 IEEE

tion of Master Group Based Industrial Ethernet)' tries to
overcome these problems by introducing a new approach.
Particular attention is paid to improving the robustness of
standard synchronization methods popular in automation.
Evaluating and judging these newly defined algorithms
raises the question of performance analysis under realistic
operating conditions.

Analytical methods allow to describe problems in a
very exact, provable, and predictable form. However, it
is very difficult or nearly impossible to analyze the dy-
namical behavior of complex systems. Quite often, it is
only feasible to describe steady states of such systems.

Prototyping allows to study the real-world behavior
of various systems. Results of such an analysis can be
achieved very fast and the basic functionality of a system
can be shown. It may however be difficult to perform such
an analysis under laboratory conditions in a reproducible
way. Moreover, large-scale analysis with more than a few
participating nodes is neither easily manageable, nor can
it be implemented in a cost-efficient way.

Simulation is an approach mainly targeted to analyz-
ing dynamical systems. Abstract models of a particular
system are developed and evaluated using a simulator. It
is thus possible to simulate large-scale installations con-
sisting of thousands of nodes. Compared to prototyping,
a simulation is not bound to real-time. To simulate the
behavior of a system over years, a simulator needs only
a fraction of time that would be needed using prototyp-
ing. Obviously, the effective duration of the simulation
depends on the available system resources (i.e., compu-
tational power and memory size) of the simulation host
system as well as on the level of detail of the simulation
model.

For the performance analysis of large-scale and hetero-
geneous systems which are within the focus of IMAGINE,
simulation is the method of choice. Nevertheless, the se-
lection and implementation of suitable simulation strate-
gies is by no means straightforward. The purpose of the
paper is thus to discuss the simulation framework which
has been developed within the scope of the project.

I'The work presented in this paper was funded by the Austrian Re-
search Promotion Agency (FFG) under the BRIDGE project 810092.

1465

The remainder of the paper is structured as follows: Af-
ter this short introduction, an approach to fault tolerant
clock synchronization is presented. Then, the demands
on the simulation framework are discussed (Section 3) as
well as an introduction into the functionality of the used
simulator is given (Section 4). In Section 5, the simulation
framework itself as well as the developed components are
described in detail. Finally, a conclusion and an outlook
to further work will round up the proposed approach.

2. Approach

In the Internet domain, the oldest and probably best
known protocol for clock synchronization is the Network
Time Protocol (NTP). This protocol has been designed
to synchronize clocks with special attention to fault tol-
erance. Due to the potential instability of the Internet,
specially designed democratic algorithms for assembling
a fault tolerant local clock value are used. However, due to
the design of NTP, the achievable accuracy is only in the
range of several milliseconds. Furthermore, the power-up
behavior is poor due to the self-adjusting internal protocol
parameters of the nodes.

Other protocols like the democratic, interval-based
Synchronized Coordinated Universal Time (SynUTC) al-
gorithms [16, 14] use the so-called Marzullo function as
convergence algorithm. The main advantage of these
democratic algorithms is the increased fault tolerance,
since it can be shown that in a network with 2F 4 1 nodes,
F' nodes may be faulty without influencing other nodes.
Furthermore, the overall accuracy of a democratic ensem-
ble increases with the number of participating nodes (sim-
ilar functionality can be found in stratum groups of NTP).

For calculating the so-called ensemble time, knowl-
edge about the clock value of all other nodes is required.
This is a significant drawback since the network load will
increase significantly. Moreover, from the system design
viewpoint, the node complexity increases in such systems
as they have to handle multiple connections in order to
keep track of 2F foreign clocks. Therefore, in the field
of industrial and home automation, where nodes have to
be as simple and efficient as possible connecting to one
single, precise reference clock is preferred.

A key player in this area is the well-established
clock synchronization protocol IEEE 1588[4] introduced
in 2002. This standard defines the Precision Time Proto-
col (PTP) and specifies clock synchronization for highly
accurate applications. It is held — compared to other pro-
tocols like NTP — as simple as possible. IEEE 1588 is cur-
rently enhanced to version 2 and the new standard is ex-
pected to be published in May 2007. IEEE 1588 synchro-
nizes clocks using a master/slave approach. Once turned
on, a node enters a listening state. During this period,
nodes try to catch synchronization messages being broad-
casted by other nodes. These synchronization messages
(containing the accurate time) are evaluated based on the
so-called Best Master Clock (BMC) algorithm. It elects a

master out of all nodes (including the node itself) by veri-
fying the accuracy of each clock.

The problem of the BMC algorithm is also its strength.
If, for example, a master node fails to work prop-
erly, it will be replaced by another, master-capable
IEEE 1588 node. As all nodes in this case would al-
ways wait for at least PTP_SYNC_RECEIPT_TIMEOUT
(which is itself defined as ten times the value of
PTP_SYNC_INTERVAL, being 2 seconds as default), the
re-election can take place in earliest 20 seconds. This
PTP_SYNC_RECEIPT_TIMEOUT is a compromise [6]
between the ability of a node to determine a new master
and to react (or not react) on simple, undelivered packets.
Besides, the value does not include possible collisions oc-
curing when two nodes decide on their own to become a
new master. Therefore, in other applications like telecom-
munication industry even longer periods (for master re-
election) are used in order to ensure stability of a commu-
nication link.

IMAGINE tries to overcome this lack of fault toler-
ance of PTP by introducing three different IMAGINE stra-
tum levels (Figure 1). IMAGINE Stratum-0 provides a
global reference time by providing an interface to highly
accurate clock references (e.g., GPS receivers or atomic
clocks). IMAGINE Stratum-1 consists of highly accurate
nodes which are potential masters. This so-called mas-
ter group combines the clocks of all master group mem-
bers to one democratic ensemble time via algorithms de-
veloped in [15]. This ensemle time is used to synchro-
nize the fully IEEE 1588 compatible slaves of IMAGINE
Stratum-2. The synchronization is done via the so-called
master group speaker, which is in the actual implementa-
tion a IMAGINE Stratum-1 enabled switch [7].

IMAGINE
Stratum-0

Ethernet link

Vi
VA
Master group

IMAGINE
Stratum-1

IMAGINE
Stratum-2

Figure 1. IMAGINE System Concept with
Master Group and IEEE 1588 Nodes

1466

3. Simulation Framework Requirements

In general, several requirements to a suitable simula-
tion framework can be formulated: The simulation frame-
work shall offer proper hard- and software models to allow
from their granularity a detailed simulation of the behav-
ior of interest. For example, to simulate the behavior of
a few thousand nodes, the exact state of each flip-flop of
each node is not of particular interest. Nevertheless, the
level of detail of the simulation models must be appropri-
ate to provide a meaningful simulation. Moreover, such
a system has to provide the possibility to replace some
of the black boxes with more fine-grained simulation ele-
ments.

Therefore, all simulation (sub-) models should be ex-
changeable. It must be possible, for example, to replace
a black box with a more hardware focused model without
interfering with the rest of the simulation framework. To
support a hardware/software co-simulation, it is desirable
that the software modules used later on for actual pro-
totype implemenation can be integrated directly into the
simulator without changes. To achieve this, the communi-
cation interface of each protocol stack, which is in general
an operating system interface, has to be replaced transpar-
ently by simulator interfaces.

The overall simulation system has to be efficient in
terms of performance. As it is the goal to simulate net-
works consisting of several thousand nodes, a continuous
time driven simulation would not end in reasonable com-
putation times. Therefore, a simulation concept based on
discrete event simulation has to be used. A Discrete Event
System (DES) is a system where state changes (events)
happen at discrete instances in time and events take zero
time to happen. It is assumed that nothing (i.e., nothing of
interest) happens between two consecutive events (in con-
trast to continuous systems where state changes are con-
tinuous). Obviously, choosing a discrete event approach
influences the design of the simulation models signifi-
cantly. Consider, for example, a model of an oscillator.
It is easy to describe in a continuous time model but can-
not be trivially adapted to be suitable in a DES.

As mentioned in Section 1, DES only needs a fraction
of time that would be needed using prototyping. Never-
theless, the granularity of the simulation models should
be chosen in such way that it is possible to simulate over
several years without exhausting the available resources.

4. Simulator Choice

In IMAGINE, the DES simulation environment OM-
NeT++[18] is used (OM NeT++ 3.3 including IN ET—
20061020 framework). In addition to OMNeT++ which
is free for academic and non-profit use, a commercial ver-
sion called OMNEST is also available. OMNeT++ pro-
vides a component-based, modular and open architecture
for discrete event simulation. In particular, it consists of a
simulation kernel and various utility classes being respon-

sible for, e.g., random number generation, statistics col-
lection, or topology discovery. The actual functionality,
ranging from simple protocol stacks up to complex com-
ponents is handled by various simulation models which
are implemented as so called OMNeT++ modules.

The simulation kernel maintains a set of upcoming
events called Future Event Set (FES). This total ordered
list is processed by selecting the next event in time, pro-
cessing the action to be taken at this event and deleting
the current event. Note that the processing of an event
may also insert future events. The simulation is finished
as soon as the FES consists of an empty list.

The timescale for the simulation core is called simula-
tion time. It is used to schedule future events as well as
to timestamp the arrival time of an event. Our framework
uses this simulation time as the global reference time to
represent the real time (e.g., Coordinated Universal Time
(UTC) or International Atomic Time (TAI)) of our simu-
lation. However, this is in contrast to the node’s local time
which represents the value of the simulation clock at each
node. Therefore, each node has its own local time.

In OMNeT++ , the IEEE754 double datatype is
available for the simulation time. Its unit may be inter-
preted freely but its size is according to IEEE 754 11 bits
for the exponent and 52 bits for the mantissa. Thus, it is
possible to distinguish between 252 events (i.e., points in
time) without loss of precision. With a unit of ns this
allows a simulation time of ~ 52 days. For long-term
simulation beyond this limit, a patched OMNeT++ ver-
sion (OM NeT + + — 3.3_longdouble) with higher pre-
cision has been developed and is currently under evalua-
tion. Using the IEEE 754 1ong_double datatype allows
a simulation of ~ 600 years in ns resolution but its use is
limited to operating systems providing the high resolution
datatype (e.g., Linux). For simulation of high-precision
clock synchronization in subnanosecond resolution, the
unit of the OMNeT++ simulation time has to be inter-
preted accordingly (e.g., 10ps). Note that this limits the
possible simulation duration.

As mentioned above, the behavior, i.e., the glue
logic of the simulation models are represented by OM-
NeT++ modules which are implemented as C++ objects.
To communicate between these OMNeT++ models, two
different types of hierarchically nested intermodule com-
munication are intended:

e On the one hand, communication which needs a
finite amount of time relevant for the simulation,
is represented as OMNeT++ messages. The mod-
els communicate by passing these messages to each
other using gates and channels. Processing is han-
dled by the OMNeT++ models being implemented
as C++ objects in the methods handleMessage ()
and/or activity ().

e On the other hand, not every communication takes a
finite amount of time which is of particular interest
for the simulation. A register access, for example,

1467

may be interesting in the simulation of VHDL code
for hardware design but not in a simulation frame-
work for protocol verification. Therefore, models
may also communicate using standard programming
(e.g., C/C++) interfaces.

As mentioned in Section 3, existing synchronization
stacks targeted to run in the prototype implementation as
well as OMNeT++ modules shall be reused and integrated
into the simulation framework. Modifications to this soft-
ware shall be avoided. An existing clock synchronization
stack, for example, shall not be modified but nevertheless
run smoothly in the simulation environment. Obviously,
concepts dealing with OMNeT++ message passing mech-
anism have to be established.

For a more detailed description of the OMNeT++ sim-
ulation concepts see [3].

5. Simulation Framework

w < .
Z e Atomic clock
Q 2
g
=5
=<
w - <}
z ¢tz
0 2<2
<8 s
=N
a
C Network D
X<
w N | o o |7 o |9
=] (4]
2E8
s 5 |0
=0k e PTP
node node

imagine demnet imagine pipnet

&)

clfch) cifcke)
[Z L/

m3_3CI0ST_ a0l m3_3C90ST_ L50I0p3_3Cs0ST MIL (013 3Co0ST.I
m3_DRES30TxAICI0STx_FD(0] m3_DHESA0TxABCI0ST_FD[OhSp_MILNF1_3C305T[0)3_DI

EN\%@ o

oI
3057 FD[1]

= TN = = z]
0 1P nodes Net 0 1P nodes Net
v s

Figure 2. Simulation Framework.

As shown in Figure 2a (abstract model) and Figure 2b
(screenshot), the topology of an IMAGINE network is di-
vided into three different IMAGINE stratum levels that
consist of various nodes like GPS receivers and atomic
clocks (IMAGINE Stratum-0) as well as different syn-
chronization nodes (IMAGINE Stratum-1 and Stratum-2).
The synchronized nodes of level 1 and 2 are intercon-
nected by broadcast networks, being divided into a demo-
cratic network (IMAGINE Stratum-1) and a PTP network

(IMAGINE Stratum-2). The simulation of these networks
consists of different simulation models which are imple-
mented as a mixture of OMNeT++ modules and C/C++
objects. On the one hand, a model for the network it-
self (cf. Section 5.1) as well as a model for simulating the
physical network medium (cf. Section 5.2) have been de-
fined. On the other hand, various modules for simulating
clock synchronization nodes (including support for demo-
cratic synchronization and synchronization using the PTP
protocol; c.f. Section 5.3) have been implemented.

5.1. Network

The topology of the simulation is split into two dif-
ferent networks. One consists of a set of clock synchro-
nization nodes (master group) located at the democratic
network (IMAGINE Stratum-1). The purpose of this net-
work is to serve as a fault-tolerant master group for a set
of PTP slaves: Multiple nodes shall establish a common
reference time via democratic clock synchronization algo-
rithms and possible global reference time connections (to
IMAGINE Stratum-0). This common reference time shall
appear to a set of PTP devices as a single PTP master.

The second level is a set of PTP devices located at the
precision time protocol network (IMAGINE Stratum-2).
They act as PTP slaves and are connected to the demo-
cratic network via the master group speaker. However, the
framework is not limited to such relatively flat networks.
The topology is freely combineable, and so hierarchical
networks such as presented in [8] are also possible.

In our simulation model, the networks represent ideal
networks with no delay and no transmission errors. They
merely serve as pure interconnection dummies which are
required for the simulator. The real-world parameters
considering transmission delay, transmission errors and
asymmetry of the receive and send path are handled at the
physical layer model of each node.

5.2. Physical Layer

The delay variation of the physical layer (PHY) and
cabling plays an important factor for precise clock syn-
chronization since it influences and limits the common
accuracy. In particular, parameters such as propagation
delay, network jitter and asymmetry have to be consid-
ered for precise simulation. Note, that in case of hardware
timestamping is provided, any sort of constant delay in the
communication path does not influence the accuracy since
it can be considered in the calculations for the common
notion of time.

The normally distributed jitter between an end-to-end
communication path is caused by the physical layer de-
vices and the cable. In the simulation, it is handled by two
PHY models, which are located at each node in the send
and receive path. The PHY accepts packets from the net-
work, delays and probably drops them and finally passes
them to its clock synchronization cell. Each PHY model
consists of the parameters delay_-mean, being used for
modeling the propagation delay in the path, delay_stdd,

1468

being used for modeling the network jitter in a path and
tx_error, being used for modeling the error rate, i.e.,
probability to drop a packet. The concrete values for the
parameters are based on measurements taken from [9].
Since two PHY models with different parameters are used
in receive and send path, it is possible to model asymme-
try in the delay, which plays an important role for precise
clock synchronization [11].

5.3. Clock Synchronization Node

Figure 3a shows the abstract model of the clock syn-
chronization node. Figure 3b shows a screenshot of the
corresponding OMNeT++ model. It consists of a software
part (network stack c.f. Section 5.3.1 and clock synchro-
nization stack c.f. Section 5.3.2) and a hardware part (syn-
chronization cell c.f. Section 5.3.3). This general model
of a node is used for democratic clock synchronization as
well as for synchronization using the PTP protocol. The
only difference is the clock synchronization stack which
can be exchanged arbitrarily.

Clock Synchronization Cell imagine.ptpnet clock(l]

Hardware model % e ;@
PTP stack ®
PTP stack OB s

cell model
Dem stack

syn1588
|
-
T I [X
S
Oscillator D ti

Software model

UDP stack
model
E e 5

[MIl scanner j %i

a) b)

Figure 3. Clock Synchronization Node.

5.3.1. Network Stack

The network stack (being UDP stack in Figure 3, 4) pro-
vides a realistic simulation of the network traffic and of-
fers interfaces for sending and receiving messages via a
network. In IMAGINE, the INET framework for OM-
NeT++ [2] is used. It is suited for simulations of wired,
wireless, and ad-hoc networks. The INET Framework
provides IP, UDP/TCP, 802.11, Ethernet and several other
protocols. Since the clock synchronization stacks in
IMAGINE rely on UDP communication only, this mini-
mal subset of the INET framework is used: The network
stack receives packets from the Media Independent Inter-
face (MII) scanner (Section 5.3.3) relying on the OM-
NeT++ communication flow and handles them accord-
ing to their protocol types. Synchronization packets are
passed to the clock synchronization stack using the stan-
dard C recvfrom() function call. For sending time
synchronization packets the clock synchronization stacks
call the standard C sendto () function of the network
stack, which processes and passes them to the MII scan-
ner.

5.3.2. Clock Synchronization Stack

The Clock Synchronization Stack (CSS) performs adjust-
ments to the local clock of the node. As mentioned be-
fore, one design goal of IMAGINE is to create an uni-
versally applicable simulation framework, where various
components/models can be integrated, exchanged, evalu-
ated, and tested easily. For this reason, simple and clear
interfaces have been defined in IMAGINE and it is pos-
sible to e.g., use democratic as well as PTP CSS. A CSS
shares an interface to the network stack for exchanging
clock synchronization packets as well as an interface to
the (simulated) cell model.

PTP Stack

The PTP stack performs precise clock synchronization
(IMAGINE Stratum-2) of the PTP slaves in the PTP net-
work with the master group speaker located between the
democratic network and the PTP network. In particular,
the following stacks are evaluated and used in IMAGINE:

e PTP stack from Oregano Systems [12]: It performs
synchronization conforming to the IEEE 1588 stan-
dard. Some of the key features are: Full Standard
IEEE 1588 support, Hardware, Software and On-the-
Fly timestamping, and rate as well as state synchro-
nization.

e PTPd daemon [5]: It is freely available under a BSD-
style license and provides a complete implementa-
tion of the IEEE 1588 specification for a standard
(non-boundary) clock.

Democratic Clock Synchronization Stack

Using democratic clock synchronization, a set of homo-
geneous nodes is able to establish an ensemble time based
on a peer-to-peer basis (IMAGINE Stratum-1). In IMAG-
INE, multiple nodes form the democratic network, estab-
lish a reference time with an optional external synchro-
nization to e.g., a GPS time and form a fault-tolerant mas-
ter group for synchronizing high precision PTP slaves.
Currently, existing and well established democratic clock
synchronization algorithms [19] are being investigated,
adapted, and reused. The final democratic clock syn-
chronization stack is still under development, however
plans exist to create a framework with exchangeable syn-
chronization algorithms such as the Fault Tolerant Aver-
age (FTA), Fault Tolerant Interval (FTI), Marzullo, or the
clock rate synchronization algorithm.

Integration of a CSS into the IMAGINE simulation
framework is straightforward: The stack remains un-
touched, only its interfaces are adapted. The system calls
of the stack are mapped to the OMNeT++ interface meth-
ods as well as to the interface methods of the other simu-
lation models. On the one hand, this includes a mapping
of the network interface functions to the functions pro-
vided by the INET framework. On the other hand, this
includes the simulated access to the hardware described
in Section 5.3.3.

1469

5.3.3. Synchronization Cell Model

I Hardware model

SYN1588°
cell model

S |
| o3 8
D
Software| 3S 5% Ja
model | S22 338
! I8 {73
| | 2
« 3
D o .
UDP } 2 e Oscillator
stack | | % ! model
\
\ .
7&777# timestamp_message()
C MIl scanner)
T

Figure 4. Hardware Model

To be able to synchronize high accuracy clocks, hard-
ware support is necessary. In IMAGINE, a hardware clock
called SYN1588 % cell is integrated into each clock syn-
chronization node. This SYN1588'% cell provides nec-
essary hardware mechanisms to perform highly precise
clock synchronization according to the IEEE 1588 stan-
dard. However, since the requirements of PTP regarding
hardware support are similar to requirements of the demo-
cratic synchronization protocol, the SYN1588 ' cell can
also be used for democratic clock synchronization.

In order to perform a realistic and meaningful sim-
ulation of clock synchronization algorithms, even those
underlying hardware components have to be emulated in
software. The main benefit of such a detailed simulation
(including an emulation of the hardware) is that our simu-
lation can use the same synchronization algorithms which
are being used in the prototype implementation. There-
fore, it is possible to compare the simulation results with
the prototype implementation directly.

The proposed hardware model which emulates the
functionality of the synchronziation cell can be seen in
Figure 4. This simulation model consists of three differ-
ent building blocks.

Oscillator Model

The simulation framework of OMNeT++ provides a
timescale called simulation time. This simulation time
is used to schedule network messages as well as timing
events. Obviously, our real-world synchronization cell
does not have such a global reference time. It rather uses
the ticks of the integrated oscillator for calculating its local
time. To be able to simulate these tick events, a software
oscillator model providing a conversion between simula-
tion time and the current ticks> has been implemented.
The behavior of a real-world oscillator differs from that of
a perfect one which means that the frequency of an oscil-

2The term current ticks is used as a synonym for the amount of
elapsed ticks since the oscillator is running.

lator varies over time. Therefore, calculating the current
ticks using a fixed tick period is not appropriate.

To be able to simulate these frequency deviations in our
simulation, a common oscillator model is used [17]. Us-
ing this model, the frequency at a given time can be calcu-
lated as f(t) = fo+ Afo+alt —to) + Afalt) + Afe(t)
with fj as the start frequency, A f as the frequency offset
at start time ¢, a the ageing factor, A f,,(¢) a jitter noise
term and A f, () an environmental term. This can be used
to establish a relationship between simulation time and
elapsed ticks.

The oscillator model has been implemented as an OM-
NeT++ simple module including an interface to the syn-
chronization cell. Using this interface, the synchroniza-
tion cell model can register timer events at a given amount
of ticks. For each registered timer event, the correspond-
ing simulation time is calculated using the above men-
tioned equation. This calculated simulation time is used
to schedule a OMNeT++ self message®. Additionally, the
event is stored together with the callback function in a lo-
cal event queue which is invoked by the oscillator model
after the given event has occurred.

MII Scanner
To be able to precisely measure the network link delay
between clocks as specified in the IEEE 1588 standard,
incoming and outgoing synchronization messages have to
be timestamped. To reduce the error introduced by fluc-
tuations in the time taken to traverse the software proto-
col stack, the timestamp shall be generated at the physical
layer. Hardware assistance is necessary for achieving this.
The required hardware support is provided by the MII
scanner. It is responsible for detecting valid synchroniza-
tion messages (i.e., PTP messages) by parsing the mes-
sage content of all incoming and outgoing network mes-
sages. Valid synchronization messages (in the case of a
PTP node, this is an UDP message with destination port
319 or 320) are timestamped and their sequence ID as
well as their source universally unique identifier (UUID)
are extracted and passed to the SYN1588 ® cel . They
are used to associate the correct timestamp with the corre-
sponding network message later on during processing of
the message.

SYN1588 ® cell Model

The main component of synchronization cell is a Clock
Synchronization Core (CSC) called SYN1588 ® cell . It
provides the necessary hardware functionality to perform
a high precision clock synchronization using democratic
or PTP based algorithms*. Our simulation model emulates
the behavior of the CSC [13, 10]. The CSC is configured
and controlled via various 32-bit registers. Currently, the
following subset of the features of the CSC are supported

3 An OMNeT++ self message is a message being sent to the module
itself at a later point of simulation time. Using this mechanism, timer
events can be simulated.

4 As mentioned above, the functionality of the CSC also satisfies the
requirement of democratic clock synchronization.

1470

by our simulation model:

The core component of the CSC is an adder-based
hardware clock with a total register length of 104 bits. The
upper 64 bits are compatible to the IEEE 1588 standard
(i.e., 32 bits for seconds and 32 bits for nanoseconds). The
lower 40 bits (32 bits subnanoseconds and 8 bits ultrafrac-
tional part) are used to increase the accuracy of the syn-
chronization process and thus allow high-precision clock
synchronization.

The hardware clock is configured and controlled via
shadow registers. These shadow registers can be used to
set the current time directly as well as to set a stepsize
which is added to the current time value with every tick
event of the oscillator. The contents of the shadow regis-
ters can be loaded directly or after a defined future point in
time has elapsed (apply timer). Furthermore, it is possible
to load the time value and the stepsize simultaneously or
separately.

Due to the length of the timer register (104 bits), it is
not possible to simply simulate the hardware clock using
standard C/C++ datatypes. The 64 bit precision of un-
signed double integers (on x86 systems) is not sufficient
and so, the Gnu Multiprecision Library (GMP) [1] has
been used. GMP is a free library for arbitrary precision
arithmetic, operating on signed integers, rational numbers,
and floating point numbers. There is no theoretical limit
in the precision of used operands and at the same time it is
very fast, since the used algorithms are highly optimized.

Based on this hardware clock, the CSC provides vari-
ous timers. To be able to schedule future events (e.g., send
a synchronization message), the PTP stack as well as the
democratic stack use period timers to implement timeouts.
Therefore, period timers are also supported by our simula-
tion model. Other timers (e.g., timers to activate external
signals) are currently not implemented, since they are not
required by the used software stacks.

As mentioned above, the MII scanner passes the se-
quence ID as well as the source UUID of detected PTP
messages to the CSC to perform hardware timestamp-
ing. The CSC stores these values together with the re-
spective timestamp. Currenty, two different First In First
Out (FIFO) buffers are used, one for incoming and one for
outgoing frames. Each entry consists of the PTP source
UUID and sequence ID as well as the upper 96 bits of the
timestamp.

Both FIFO buffers can be accessed via registers. Addi-
tionally, an interrupt service which indicates a received or
sent network packet is available.

6. Preliminary Simulation Results and Future
Work

As a first application, the open source PTP daemon has
been evaluated. A simple simulation network consisting
of a simple PTP network has been set up. This PTP net-
work contains 3 PTP slaves and 1 PTP master providing
the global reference time. The democratic network has

been left out for simplification. The following parameters
have been used for the 4 nodes:

e Network and PHY (based on [9]): CAT-5, full-
duplex, 3 meter cable length, Src. 3Com 3C905T
and Dst. D-Link DFE530Tx network interface cards
(delay-mean = 303.50 ns, delay_stdd = 0.92 ps,
trx_error = 10’10), Src. D-Link DFES30Tx
and Dst. 3Com 3C905T network interface cards
(delay-mean = 330.44 ns, delay_stdd = 0.98 ps,
tz_error = 10710)

e Oscillator: frequency fo = 10Mhz, class =
100ppm, ageing factor a = 10719 Hz /s, phase noise
Afn(t) = 70ps (normal distributed), environmental
factors (e.g., temperature) A f.(¢) ignored

Figure 5 shows the startup behavior of the network.

Relative Clock Error vs. Time

10 T T S e T T

o
©
©
T
N
A
\

Node 1 (Master)
— = —Node 2
(%4 — = Node 3
— — —Node 4

o
©
>
T
\
N

Relative Error Compared to Master
1) 1)
© ©
N S
T T
< ~
~

14
©
T

o
Y
3

0.86 I I I I I I I I
20 40 60 80 100 120 140 160 180 200
Time t (s)

Figure 5. Open Source PTP Stack Evalua-
tion.

In this paper a simulation framework for distributed
clock synchronization is presented. It offers the possibil-
ity to simulate, evaluate, and compare different clock syn-
chronization methods. In particular simulation of large-
scale fault-tolerant networks consisting of resource lim-
ited devices as well as more powerful nodes is possible.

Nevertheless, further research is necessary to improve
and refine the simulation. These steps include an ad-
vanced model and detailed dissemination of the oscilla-
tor and a detailed evaluation regarding precision, start-up,
and fault-tolerant behavior of the different synchroniza-
tion stacks. The PTP stacks and the democratic stacks
will be compared and measurements will be taken. Fi-
nally, the implemented algorithms will be transfered to
hardware (i.e., fault-tolerant switches, SYN1588 ® cell)
so that prototype implementations will be available.

1471

7. Acknowledgments

The authors wish to thank Patrick Loschmidt not only
for his useful hints, but also for many helpful discussions.

References

(1]
(2]
(3]

(4]

(]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

(14]

[15]

[16]

(17]

GNU Multiple Precision Arithmetic Library (GMP).
http://gmplib.org/.

INET Framework for OMNeT++/OMNEST release 2006-
10-12. http://www.omnetpp.org/doc/INET/.

OMNeT++ version 3.2. http://www.omnetpp.org/doc/
manual/usman.html.

1588 IEEE Standard for a Precision Clock Synchroniza-
tion Protocol for Networked Measurement and Control
Systemsn. 1EEE Instrumentation and Measurement Soci-
ety TC9, 2002.

K. Correll, N. Barendt, and M. Branicky. Design Consid-
erations for Software Only Implementations of the IEEE
1588 Precision Time Protocol. In Conference on IEEE
1588 Standard for a Precision Clock Synchronization Pro-
tocol for Networked Measurement and Control Systems,
2006.

J. C. Eidson. Measurement, Control and Commmunication
Using IEEE 1588. Springer Verlag London 2006 Limited,
2006.

G. Gaderer, P. Loschmidt, and T. Sauter. IEEE 1588 Real-
Time Networks with Hybrid Master Group Enhancements.
In Proceedings of the 4th International Workshop on Real
Time Networks, July 2005.

G. Gaderer, P. Loschmidt, and T. Sauter. Quality moni-
toring in clock synchronized distributed systems. In 6th
IEEE International Workshop on Factory Communication
Systems, pages 13-21, June 2006.

M. Horauer. Clock Synchronization in Distributed Sys-
tems. PhD thesis, Technical University of Vienna, 2004.
P. Loschmidt, G. Gaderer, and T. Sauter. Synchronized
Access to Sensor Networks. In Proceedings of the IEEE
Sensors 2006, page 218, Daegu, October 2006. IEEE.

T. Miiller, A. Ockert, and H. Weibel. PHY's and Symetri-
cal Propagation Delay. In Conference on IEEE 1588 Stan-
dard for a Precision Clock Synchronization Protocol for
Networked Measurement and Control Systems, 2004.
Oregano Systems. Precision Time Protocol, preliminary
data sheet, February 2006.

Oregano Systems. SYNI1588 enabled IEEE 1588 compli-
ant clock sychronization, SYN1588Clock_L IP Core, brief
data sheet, September 2006.

U. Schmid. An Annotated Bibliography on Clock Syn-
chronization in Distributed Systems. Technical Report
183/1-45, Vienna University of Technology, Department
of Automation, Dec. 1994.

U. Schmid and K. Schossmaier. Interval-based Clock Syn-
chronization. In Journal of Real-Time Systems, volume 2,
pages 173-228, March 1997.

U. Schmidt. Orthogonal accuracy clock synchronization.
Chicago Journal of Theoretical Computer Science, pages
3-77, 2000.

D. B. Sullivan, D. W. Allan, D. A. Howe, and F. Walls.
Characterization of clocks and Oscillators. Technical Note
1337, NIST, 1190.

(18]

(19]

1472

A. Varga. Using the OMNeT++ discrete event simulation
system in education. [EEE Transactions on Education,
1999.

B. Weiss, G. Gridling, U. Schmid, and K. Schossmaier.
The SimUTC fault-tolerant distributed systems simulation
toolkit. In 7th International Symposium on Modeling,
Analysis and Simulation of Computer and Telecommuni-
cation Systems, October 1999.

	Main
	Welcome Messages
	Committees
	Table of Contents
	Industry Day
	Keynote Talks
	Conference at a Glance
	Technical Program at a Glance
	Technical Program
	Author Index
	Reviewers
	CD-ROM Help
	Search
	Zoom In
	Zoom Out
	View Full Page
	Go to Previous Document

